基本分类
电波传播基本上是按研究对象进行分类的。由于电波传播是研究电波和媒质间的作用过程,电波和媒质都是研究的对象。这样就形成了按电波频率(波段)划分和按媒质划分两类。按频率分类有极长波传播、超长波传播、长波传播、中波传播、短波传播、超短波传播、微波传播和毫米波传播等;按媒质分类则有地下电波传播、地波传播、对流层电波传播、电离层电波传播和磁层电磁波等。这两种分类基本上是“平行”的和彼此对应的,但又是互相交叉的(见图)。
由于媒质结构、电波波长等不同,电波传播的物理机制各异。有的以散射传播为主,而有的则以波导传播为主。物理机制不同,传播理论方法也就不同。从这个角度分类,有随机媒质传播理论(散射理论)、分层媒质传播理论、波导模传播理论、绕射传播理论、磁离子理论和反演理论等。
与其他学科的关系 电波传播的基本理论出发点是电磁理论即麦克斯韦方程组和来源于物理学中的电动力学。地球、地球大气层以至外层空间是电波传播的媒质,多种多样的媒质产生丰富多彩的电波传播内容。为了研究不同类型的电波传播,必须了解不同媒质的物理结构及其运动变化。例如,研究地波需要了解地壳,特别是大地电特性。研究对流层传播需要知道对流层介电特性及其变化,从而要了解温度、湿度和压力结构及其变化、层结和湍流运动等,还要知道各种空气成分特别是氧和水汽分子及其与电波的相互作用以及云雾降水等。而电离层传播研究则需要知道电离层电子浓度和地磁及其变化,还要知道太阳黑子、磁暴、极光以及核爆炸等的影响。在地空电波传播研究中,磁层和外层空间的物理特性当然也需要了解。因此,电波传播是以地球物理、气象学、大气物理和空间物理等为物理基础的。
电波传播是电子学的一个分支学科,同电子学中其他分支的关系非常密切。首先,电波传播探测需要利用通信、雷达、无线电导航和天线等技术设备,数据处理和测试控制则须利用电子计算机,而电波传播的研究成果也为这些系统设计、运转和参数预报服务。
由于无线电波总带着传播媒质的信息,反映地球、大气层以至外层空间的物理状态及其变化,电波传播现已成为地球物理、气象学、大气物理、空间物理以及天文等方面常用而又极其重要的观测手段之一。电离层和磁层等的地面探测和顶部探测,几乎都是用无线电波。无线电波用于气象和天文,形成了新的学科──无线电气象学和射电天文学。除提供手段外,电波传播在媒质方面的探测数据及分析结果等,也是对相应物理学科的贡献。
电波传播理论与数学的联系特别密切。它既利用场论和数学物理方法和数理统计等方面最新的结果,同时又促进这些方面的发展。
基本形式
地波绕射传播。
发射天线位于地面上,电磁波沿地表面绕射传播,这种传播方式叫地波绕射传播。由于地表面电介质特性、电波频率的不同使地波在传播过程中收到不同程度的衰减,在近距离情况下可利用舒莱金——范德波尔公式计算地面波场强,但考虑地球曲率影响时则需使用绕射公式计算。ITU-R P.526给出了工程中常用的光滑球形地面电波绕射传播时的传输损耗计算模型,这对粗糙度不大的光滑海面情形也是适用的。
视距传播。
电波从发射天线直接传播到接收天线或经过地面反射之后到达接收点的传播方式。也就是说,发射天线和接收天线仅限于在相互“看”得见的视线距离内的传播。陆地移动通信、个人通信以及寻呼通信等都是以这种方式传播。对地面通信而言,这时天线架设的高度比波长大得多。由于地球曲率的影响,电波在收发天线间传播的最远距离可由天线高度决定。
散射传播。
无线电波经过对流层或电离层中的不均匀分布介质而散射至接收点,使电波到达视线以外的地方。对流层在地球表面上方约10~18公里处,是非均匀介质,反射指数随着高度的增加而减小。 散射传播适用的波段和视距传播的基本相同但距离远得多(例如电离层散射可达2000公里),所以对地面通信来说它是超视距传播。
波导传播。在分层介质中,层与层之间可能存在着类似于金属波导管内的传播方式,称为波导传播。这种波导是自然条件下存在的波导,或其它不是用来专门传播电波的波导(例如地下的坑道)。近海面蒸发波导中的电波传播就属于这类传播形式。蒸发波导是由于近海面水汽随高度升高迅速下降形成的一种异常大气结构,在一定的海域有较高的出现概率、 且存在时间长。 蒸发波导能将一定频率的电磁波陷获在波导结构内而形成电波的超视距传播。
基本应用
电波传播在无线电系统中的应用非常广泛,几乎所有的无线电系统都要涉及电波传播问题,都要利用电波传播的规律以及有关公式、图表、数据和资料等。早期的电波传播研究就是为了建立和改善无线电通信而开展起来的。随着电子技术的发展,电子系统工程日新月异,提出各种各样的电波传播问题。正是这些实际应用中的问题,成了电波传播研究的出发点和动力,促使电波传播研究向前发展。反过来,电波传播每一新的发现和进展,也都为电子系统工程开辟新的技术途径。电波传播对电子系统工程起着技术基础的作用。
电子系统工作频段需要根据系统技术指标和电波传播特性来选择。以水下潜艇通信为例,为了要使无线电信号穿过海水而不遭受太大的损耗,只能选用在海水中吸收损耗小的超长波或更长的波段。超远程精密导航系统选用长波和超长波,就是因为这样的电波沿地面的传播衰减很小,而且相位和幅度都相当稳定。短波可以有效地经电离层反射达到数千、上万公里的距离,与长波、超长波相比较,传输容量较大,天线方向性也较强,所以,远距离的通信、广播、航海移动通信、还有超视距雷达等,都常用这一波段。然而,大容量、高质量和高可靠度的无线电通信和高分辨率雷达等,却必须使用超短波、微波、毫米波甚至波长更短的波。
电子系统必须考虑的另一电波传播问题是传播衰减预计。通信、广播和导航系统,必须有足够的辐射功率,以便经过传播的波在接收端能够保证有足够的信噪比,为此就需要预计单向传播衰减。雷达系统则必须预计双向传播衰减和目标散射截面。为使所有的电子系统都能互不干扰地工作,每一无线电发射系统还应保证不干扰其他系统,这又需要预计干扰场强。
电子系统的电路设计在很大程度上是电波传播条件设计。如通信站址选择、天线架设高度和仰角的确定以及如何采取有效的分集接收措施以减轻衰落等,都要根据电波传播规律来进行。另外,系统设备的设计还要适应传播信道的特性。例如,传输容量或传输速率都不能超过传播信道所容许的限度。
在雷达系统方面,除传播衰减或作用距离外,杂散回波、地面反射和大气折射效应等也都应该加以考虑。杂散回波如地形地物回波,海浪回波,云、雨回波以及飞鸟、飞虫回波等会影响目标检测;地面反射造成的虚目标可能引起错误跟踪;大气折射引起目标视在位置与真实位置之间的误差,如仰角误差、距离误差、高度误差和方位角误差等。为了达到精确定位,这些因素都须根据传播特性而加以抑制、消除或修正。低仰角跟踪情况尤其如此。在遥感技术方面,电波在各种粗糙面及其覆盖层的散射特性,是正确处理和解释数据必不可少的知识,其中包括各种农作物、森林、水面以及水面污染等的后向散射截面和谱特性等。
电波传播在大气物理等方面的应用,主要有两种方式:
①直接利用传播媒质探测研究结果,如大地电特性、降水特性、对流层结构和电离层结构等;
②利用电波传播规律,给出大气物理过程等的传播效应,从而寻求大气物理过程等的无线电探测和分析方法。例如,电离层非相干散射雷达探测,就是基于强大的电磁波与电离层中处于热运动状态的电子和离子的相互作用,以及包含在散射信号中有关电子和离子的浓度、温度和成分等信息。
发展动向
①随着科学技术的发展,电波传播正在进一步扩展研究和应用领域。例如,电磁波的生物效应、地震过程中的电磁现象的研究等,都有可能获取进展。
②建立更加完善和更加精确的电波监测系统,获取更加完整的媒质和传播特性数据。总结出更加接近实际的数学模型,利用电子计算机,迅速提供环境数据和电波预测数据。
③更加密切地同地球物理、空间物理、天体物理、大气物理等的研究相结合,发挥电波传播在这些物理研究中的作用。